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In the space of vectors x = (x, x5, ..., Xy), We con-
sider an arbitrary scalar function (Hamiltonian) 4 = h(x)
and an arbitrary matrix M = (M;;) with constant ele-
ments. The system of equations

dt dx;

is called a gradient system. In [2], similar systems were
first examined under the assumption that M is nonsin-
gular, and they were called symmetrizable. The star
converts a row into a column and is required for match-
ing the tensor dimensions on the left- and right-hand
sides of the system. In the special case of M satisfying
M? = —F (the dimension of the phase space is even:
dimx = 2s), a Hamiltonian system arises.

PAIRWISE INTERACTION

Consider a macroscopic system consisting of a large
number N? of identical components x; (where N? > 1)
and assume that the equations of motion of the system
are given by a Hamiltonian H and a matrix M:

e I

Usually, we deal with the pairwise interaction

N N
H =" H(x;x),
i=11=1
where H is the sum of N? Hamiltonians H = H(x,y)
defining the interaction of the two components x and y.
The terms differ from one another only by the argument
indices.

H = H(xy, x5, ..., Xy),

KHINCHIN SUMMATORY FUNCTIONS

A systematic study of the properties of summatory
functions in statistics goes back to Khinchin’s work [1]
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and is associated with the generalization of the law of
large numbers to functions, although the role of sym-
metric functions was already well known in algebra
[e.g., Viéte’s formulas (about 1590)]. In our problem,
summatory functions arise by themselves from the
application of Fourier series expansions of functions in
terms of a basis.

Consider an arbitrary basis {z,(x)} in the space of
functions of one variable x. The interaction Hamilto-
nian H(x, y) is expanded in terms of the corresponding
basis {z4(x)zp(y)} in the space of functions of the two
variables:

H(x,y) = 3 H2,(x)zp(y). 3)
m

Substituting the resulting expression into the Hamilto-
nian of the system yields

H = EH“ﬁ[ZZa(x,)} [Zzﬁ(x,)}. 4
off l !

N
= ZZa (x;) arise
i=1
automatically on changing the order of summatory.
Expressing H in terms of the new variables Z,,,

Thus, the summatory functions Z,

H =Y H"Z,27, 5)
ap

we arrive at an important conclusion: the Hamiltonian
is a quadratic function of the macroscopic variables Z,
(the function is quadratic because the interaction is
pairwise). In addition, note that the coefficients of the
quadratlc form H coincide with the Fourier coefficients
H" in the expansion of H(x, y) in terms of {z,(x)z3(y)}.

MACRODYNAMICS

Writing the Hamiltonian H of the system in terms
of the variables Z H = H(Z) simplifies the equations of
motion to

JH aZB
ZazB ax, ©
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The right-hand sides of the resulting equations contain
both scalar (macroscopic) quantities,

oH

B _
and vector (microscopic) fields,
dzp\*
ag(x) = M(a—:) . (8)

In this notation, we can more easily see the structure of
the equations of motion

dx;
== Y Lag(x),
B

which prompts the idea of extracting macrodynamics
(the evolution of Zg) from the huge set (N > 1) of
microscopic motions x;.

Differentiating the relation defining Z, with respect
to time,

dz, 0z,dx;
@t 29x di 9
and substituting the derivatives of x;, we obtain
dzg\*
aB(xi) = M(axﬁ) s
(10)

= 2%[2Lﬁaﬂ(x,;)}
i ‘Lp

0z, ,(0z

p —~opp =B
At

The expression in curly brackets is a summatory func-

tion, and each of its terms can be expanded in terms of
a basis:

02y, (07
e b

i

) = Igztxo.

Here, ILB are constants (Fourier coefficients) deter-
mined only by the properties of {z,(x)} and M but not
related in any way to the original equations. Summing
the equations over all the components x;, we entirely
eliminate the [ variables and obtain the equations

dzZ,
dt

Substituting LP from (7) gives the macrodynamic equa-
tions

= [1pz,L°. (11

dza — I'Y Z aH

@ etz (12)
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M-ALGEBRAS AND QUADRATIC
POLYNOMIALS

The analysis above lacks formal rigor, since we
ignored the convergence of the arising series. However,
these calculations become strict for the important case
of M-algebras.

Definition. A finite-dimensional subspace of a space
of functions with a basisoz(x) is called an M-algebra if it
is closed under the ® product operation defined as

dzy . (dz
—M(-—!‘) = Iipz,(x).

2, ®z =
« =BT g dx

(13)

The expansion coefficients /] op are called the structural
constants of the algebra.

The nonemptiness of the set of defined objects is an
obvious requirement for the definition to be meaning-
ful. In our case, the space of quadratic forms constitutes
an algebra for any matrix M. This follows from the fact
that the derivative (gradient) of a quadratic form is a lin-
ear form and that the product of two such forms is again
a quadratic form. The M-algebra can be expanded by
adding a constant and all the linear functions x,. The
example of the expanded M-algebra demonstrates the
nonemptiness of the sets of M-algebras but does not
exhaust this set. In the simplest case of a system with
one degree of freedom, a finite algebra is generated
only by the two functions

)

a(x) = x, bx) = (14)

l\)|*<

Even in this case, we have a meaningful problem. Let

i
= z x, B = 2—2—
! 1
In the new notation, the equations for x; take the form

d-xi aH
dt aA

H = H(A, B), where

oH

ia_B' (15)

From (15), we can derive the following macrodynamic
equations, which close the system:

dA oH oH

- VoAt

dB oH oH (16)
= A?)X ZBaB.

In these equations, the assumption that the interaction
is pairwise and, hence, the Hamiltonian H is quadratic
with respect to the M-variables A and B has not been
applied. The equations are valid under the much more
general assumption

H = H(A, B). (17)
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Note that all the equations in (13) coincide (up to the
notation) with the equation for the u-motion of a single
component:

dx 0H  oH
di = 9A 9B (18)
Therefore, the system of N equations is, in fact, reduced
to the system of three equations in (15) and (16). By
(analytically or numerically) integrating system (16),
we obtain one linear equation (18) with variable coeffi-
cients. Any solution x{r) is obtained by substituting
appropriate initial data into the solution to Eq. (14).

In the two-dimensional case [x = (p, ¢)], there are
five M-variables (from the algebra of quadratic polyno-
mials):

P=p. W= Z% R = pid

0= z=Y%L

If the Hamiltonian is a function of only macroscopic
variables [i.e., H = H(P, Q, R, W, Z)], the Hamilton sys-
tem

(19)

dt ~— dp; dt ~ 9dp,
can be rewritten as
dp; __0H_ 0H_ oH
ar a0 Pior 957 0
dai _ oM oH oM ]
ar ~ op  PowT99R
This yields the macrodynamic equations
dpP oH _oH _oH
a = Voo "R %z
dQ _ \OH pdH _ oH
@ - Nor Paw %
dR JoH oH _oJH oH
8 _ pll _HowZdE 2l L7917 2
a - PP War %0 %z Y
dw oH oH _oH
i —P@—?.Wa—R—Ra—Z,
dZ  ,0H _O0H oH
E = QgF—Ra—‘/V'FZZaR

Of course, the mechanism involved in extracting
macrodynamic equations is the same as in the case of a
general M-algebra. Note the important special case of
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mechanical systems where the Hamiltonian is the sum
of the kinetic and potential energies:

2 2 2
2 i zz q4: 4
H = A 2—2—”’ + 2 U(qi’ g9 E, EI)

Then,

(22)

H=lw+u 2), (23)
m

and the system of macrodynamic equations consider-
ably simplifies to

o = -N55-05
‘;’iif - %W—QS—IQ]-zzg—LZ-’, 24)
‘idvtl’ - -Pg—g—Rg—g,

An analysis of the behavior of the macrodynamic
equations is beyond the scope of this work, but numer-
ical experiments have revealed not only equilibrium
states but also rather diverse (and intricate) steady-state
regimes.

DECOUPLING OF COMPONENTS

Let us describe the basic ideas contained in the anal-
ysis. Suppose that we are given an arbitrary M-algebra

{2/}

dZ(xM(dZﬁ (25)

* a4
Ve dx) = lagzy(x)

and a Hamiltonian H = H(Z,, Z,, ..., Z;), which is a
function of only the macroscopic variables

Za = zza(xi)

l

and (in the case of a pairwise interaction) is a quadratic
polynomial in its arguments. The system {M, H} gen-
erated by the matrix M and the Hamiltonian H,

dx; oH\*
. == 26
dt M(ax,-) ’ (26)
can be written in the new variables as
dx,- _ aH dz‘} *
@ g(azﬁ)’” (E) ' @D

Macroscopic motions can be extracted from this system:
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dZ,
i

oH
=. (28)
190Z

B

Moreover, given Z, the system of microscopic
motions x; splits into independent motions. All the
equations are identical in form (up to the notation of the
variables) to a single standard equation for x:

dx _ dH dZa)*
== = . 29
dt dZ, (dx (29
Therefore, the trajectory of the system in the multi-
dimensional macroscopic space (x,, X5, ..., Xy) can be
precisely replaced by the set of N trajectories (differing
only in the initial data) in the standard p-space of x.

The steps in the analysis can be described as fol-
lows. In the original system, each component interacts
in a pairwise manner with the others. Altogether, there
are N? couplings. On introducing the “superfluous”
macroscopic variables Z, the interaction between x; and
x, can be replaced by the action of Z on ;. There remain
N couplings. All the components are identical; there-
fore, motion in the multidimensional macroscopic
space is equivalent to the motion of a cloud of points in
the standard p-space of x. Only one coupling remains in
this case.

Knowledge of a single trajectory of the macroscopic
system is sufficient for decoupling its components.
Such a trajectory can easily be computed on a modern
computer because the dimension of the macroscopic
system is independent of N, although N can be involved
in the coefficients of the macroscopic system.

EQUIVALENT FIELD AND MACRODYNAMIC
EQUILIBRIUM

It is convenient to rewrite Eq. (29) as

dx _ , (oh\*
i M(ax) 30)
by introducing an “equivalent” field A(x, Z):
oH
h(x,Z) = a‘z’f‘*(")’ (3D

Then, the motion of x can be interpreted as motion in
the “external” field h(x, Z), whose parameters are deter-
mined by the macroscopic variables Z. An analysis of
any system usually begins with the study of its steady-
state regimes, and they are frequently the only objects
of analysis if they are sufficient for practical purposes.
Since the system of equations

az
E_f(z)’
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dx
a4 (7 x
o g(Z, x)

is “triangular” (i.e., the equation for Z does not involve x),
we can introduce the concept of the macrodynamic
equilibrium

f(Z) =0, Z = const,
which means that only the macroscopic system is sta-

tionary. This is a natural generalization of the concept
of a “thermodynamic equilibrium.”

In a macroscopic equilibrium, the equivalent field
h(x, Z) is time-independent and the system of equations
for x becomes autonomous. It is fairly likely that this
important special case of the concept of an equivalent
field corresponds to the concept of a self-consistent
field in physics. However, a detailed analysis of this
interesting question is beyond the scope of this paper.
The stationary equivalent field is also interesting in that
it provides a simple and visual interpretation of passage
to the limit of N — oo. Each trajectory of the original
system generates N trajectories in the space of the sin-
gle component x. If the starting points of these trajecto-
ries are distributed sufficiently uniformly, the trajecto-
ries will fill (in the limit) the whole space. Therefore,
the phase portrait of the system can be interpreted as the
limit of the projection of a single trajectory of the orig-
inal system onto the p-space. This relation promises
interesting results in future studies and considerably
expands the applicability range of the qualitative theory
of ordinary differential equations. Recall that the right-
hand sides of the macrodynamic equations are always
quadratic in the case of a pairwise interaction. This
indicates a strong relationship between the systems
under consideration and general bilinear systems [3].
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